The role of mathematical models in understanding pattern formation in developmental biology.
نویسندگان
چکیده
In a Wall Street Journal article published on April 5, 2013, E. O. Wilson attempted to make the case that biologists do not really need to learn any mathematics-whenever they run into difficulty with numerical issues, they can find a technician (aka mathematician) to help them out of their difficulty. He formalizes this in Wilsons Principle No. 1: "It is far easier for scientists to acquire needed collaboration from mathematicians and statisticians than it is for mathematicians and statisticians to find scientists able to make use of their equations." This reflects a complete misunderstanding of the role of mathematics in all sciences throughout history. To Wilson, mathematics is mere number crunching, but as Galileo said long ago, "The laws of Nature are written in the language of mathematics[Formula: see text] the symbols are triangles, circles and other geometrical figures, without whose help it is impossible to comprehend a single word." Mathematics has moved beyond the geometry-based model of Galileo's time, and in a rebuttal to Wilson, E. Frenkel has pointed out the role of mathematics in synthesizing the general principles in science (Both point and counter-point are available in Wilson and Frenkel in Notices Am Math Soc 60(7):837-838, 2013). We will take this a step further and show how mathematics has been used to make new and experimentally verified discoveries in developmental biology and how mathematics is essential for understanding a problem that has puzzled experimentalists for decades-that of how organisms can scale in size. Mathematical analysis alone cannot "solve" these problems since the validation lies at the molecular level, but conversely, a growing number of questions in biology cannot be solved without mathematical analysis and modeling. Herein, we discuss a few examples of the productive intercourse between mathematics and biology.
منابع مشابه
Developmental Biology: Mathematical Modelling of Development
Understanding how structures (e.g. hair, teeth, feathers, limbs and pigmentation patterns) arise from the initially unstructured fertilised egg is one of the key challenges in developmental biology. Mathematical models enable us to investigate how certain biochemical and/or biophysical processes interact to produce pattern and form. They provide a unifying theme for spatio-temporal patterning a...
متن کاملSPOT PATTERNS IN GRAY SCOTT MODEL WITH APPLICATION TO EPIDEMIC CONTROL
In this work, we analyse a pair of two-dimensional coupled reaction-diusion equations known as the Gray-Scott model, in which spot patterns have been observed. We focus on stationary patterns, and begin by deriving the asymptotic scaling of the parameters and variables necessary for the analysis of these patterns. A complete bifurcation study of these solutions is presented. The main mathematic...
متن کاملThe Intersection of Theory and Application in Elucidating Pattern Formation in Developmental Biology.
We discuss theoretical and experimental approaches to three distinct developmental systems that illustrate how theory can influence experimental work and vice-versa. The chosen systems - Drosophila melanogaster, bacterial pattern formation, and pigmentation patterns - illustrate the fundamental physical processes of signaling, growth and cell division, and cell movement involved in pattern form...
متن کاملWaves and patterning in developmental biology: vertebrate segmentation and feather bud formation as case studies.
In this article we will discuss the integration of developmental patterning mechanisms with waves of competency that control the ability of a homogeneous field of cells to react to pattern forming cues and generate spatially heterogeneous patterns. We base our discussion around two well known patterning events that take place in the early embryo: somitogenesis and feather bud formation. We outl...
متن کاملMathematical models of morphogen gradients and their effects on gene expression.
An introduction to mathematical models of pattern formation by morphogen gradients is presented, using the early embryo of the fruit fly Drosophila as the main experimental example. Analysis of morphogen gradient formation is based on the source-diffusion-degradation models and a formalism of local accumulation times. Transcriptional control by morphogens is discussed within the framework of th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Bulletin of mathematical biology
دوره 77 5 شماره
صفحات -
تاریخ انتشار 2015